
Homogeneously precessing domain in 3He-B: formation and properties

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys.: Condens. Matter 21 164202

(http://iopscience.iop.org/0953-8984/21/16/164202)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 19:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/21/16
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 21 (2009) 164202 (9pp) doi:10.1088/0953-8984/21/16/164202

Homogeneously precessing domain in
3He-B: formation and properties
V V Dmitriev and I A Fomin

P L Kapitza Institute for Physical Problems, 2 Kosygina Street, 119334 Moscow, Russia

E-mail: fomin@kapitza.ras.ru

Received 22 January 2009
Published 31 March 2009
Online at stacks.iop.org/JPhysCM/21/164202

Abstract
The long-range order realized in the superfluid phases of 3He leads to a nonlocal motion of spin
in these phases. In the B phase the nonlocality manifests itself in the formation of a
homogeneously precessing domain (HPD). This domain is formed under conditions of nuclear
magnetic resonance. Within the domain spin precesses coherently—with the same frequency
and phase even though the steady magnetic field can be nonuniform. Coherence of precession is
maintained by the spin current carried by the condensate of Cooper pairs. The key experiments,
revealing the main properties of the HPD and the underlying theory are briefly reviewed in
this paper.

1. Introduction

A distinctive property of liquid helium as a physical object
is its quantum character. This liquid demonstrates quantum
phenomena on a macroscopic scale. The most basic of these
phenomena is superfluidity. In a contrast to the classical
flow, which emerges as a result of averaging of a random
motion of particles, superflow is an ordered—coherent motion
of particles, no entropy is carried by this current. Liquid
4He undergoes a superfluid transition at a temperature Tλ ≈
2.17 K . The change of symmetry at this transition is
characterized by the order parameter, which is a scalar complex
function ψ = |ψ|eiϕ . The gauge symmetry is broken at
this transition and the long-range order on the phase ϕ is
established. Spatially nonuniform perturbations, which tend to
destroy this order, produce a superfluid current (supercurrent)
of mass: js ∼ ∇ϕ, restoring the long-range order.

Properties of another quantum fluid–liquid 3He differ
strongly from those of 4He. The difference stems from their
statistics. Nuclei of 3He have spin 1/2, and 3He forms a Fermi
liquid; it can became superfluid only via Cooper pairing as it is
in superconductors. Since the discovery of the superfluidity of
3He [1] we know that it happens in the millikelvin temperature
range. The Cooper pairs in 3He are qualitatively different from
‘conventional’ superconductors. Two fermions with spin 1/2
can form the Cooper pair either in a singlet state—with a total
spin 0, or in a triplet state—with spin 1. The former case
is realized in conventional superconductors, the latter in the
superfluid 3He. Formal description of a state with the triplet

type of Cooper pairing requires three complex amplitudes—
one for each z-projection of spin 1, 0, −1:

� =
⎛
⎝

ψ↑↑
1√
2
(ψ↑↓ + ψ↓↑)
ψ↓↓

⎞
⎠ . (1)

The arrows here indicate the orientations of the spins of
individual quasi-particles, bound in the Cooper pair. This
form of the order parameter suggests the possibility of spin
transport by the condensate of Cooper pairs, independent of
the mass transport. As an illustrative example consider the
order parameter, for which zero spin projection on an axis of
quantization is absent and two other projections have equal
amplitudes [2]:

� = |�|eiϕ

( eiγ

0
e−iγ

)
. (2)

In particular, such a form has the order parameter of the A
phase of superfluid 3He for the properly chosen direction of the
spin quantization axis. Given the order parameter (2) one can
separately find currents of up and down components of spin:
j↑↑ = (h̄/2m)|�|2(∇ϕ + ∇γ ) and j↓↓ = (h̄/2m)|�|2(∇ϕ −
∇γ ). Their sum gives the current of mass js ∼ h̄∇ϕ and
the difference—the current of z-projection of spin j z

sp ∼
(h̄2/2m)∇γ . These currents are independent. The order
parameter equation (2) can also be viewed as a ψ-function
of a particle with spin 1 and spin projection 0 on a direction
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d which is perpendicular to the z-axis. The orientation of d
in the plane perpendicular to z is determined by the phase γ .
When γ varies vector d rotates about the z-direction. For a
state with a constant spin current the end of d traces out a
helix with a pitch 2π/|∇γ | and the axis oriented along ∇γ .
Speaking formally, spontaneous breaking of gauge symmetry
(phase ϕ) at the superfluid transition makes possible a flow
of mass supercurrent, while spontaneous breaking of the spin
rotation symmetry (angle γ ) that of spin supercurrent.

The considered situation, when only one direction d
describes the local spin structure of the order parameter is
exceptional. In a general case components of the triplet
order parameter equation (1) are complex functions of the
wavevectors k̂ of the Fermi-particles, bound into the Cooper
pair. A structure of condensate of Cooper pairs is specified
by a set of vectors d(k̂). In 3He Cooper pairs are formed in
a state with the orbital angular moment 1, meaning that each
of the three spin components of the order parameter is a linear
combination of projections k̂x , k̂y, k̂z .

If spin–orbit interaction is neglected rotation of a
spin vector d with respect to its ‘orbital’ argument k̂
does not change the energy of the state. This rotation
can be parameterized by the Euler angles, determined as:
R(α, β, γ ) = Rz(α)Ry(β)Rz(γ ), where Rz(γ ) is the matrix
of rotation at the direction ẑ for an angle γ etc. In other
words at a triplet Cooper pairing the condensate of Cooper
pairs, in addition to the degeneracy with respect to the phase ϕ,
is degenerate with respect to three more parameters: α, β, γ ,
their variation in space creates spin current, which tends
to restore a uniform state. The following combinations of
gradients of α, β, γ have the meaning of spin superfluid
velocities:

v
sp
1 j = h̄

2m3
(− sinα∇ jβ + cosα sinβ∇ jγ ),

v
sp
2 j = h̄

2m3
(cosα∇ jβ + sin β cosα∇ jγ ),

v
sp
3 j = h̄

2m3
(∇ jα + cos β∇ jγ ).

(3)

Each of the combinations transports respectively the x, y or
z projection of spin. These projections will be denoted here
by Greek indices μ, ν etc. The additional kinetic energy is a
quadratic combination of the velocities:

F∇ = 1
2ρμν jlv

sp
μjv

sp
νl . (4)

The explicit form of the tensor of spin superfluid densities ρμν jl

depends on a particular form of the order parameter. The spin
current is then determined as

j sp
μ = ∂F∇

∂v
sp
μl

. (5)

2. Dipole energy

At that point it has to be mentioned that the parallels between
the spin and mass supercurrents can not be extended too far.
The essential difference between these two types of transport

is that spin, unlike mass, is not an exactly conserved quantity.
Spin–orbit interaction can change the total spin of the system.
In the case of superfluid 3He spin–orbit coupling originates
from the interaction of the dipole magnetic moments of the
nuclei of 3He, bound in a Cooper pair. This interaction brings
about a macroscopic ‘dipole’ energy with a potential UD,
depending on the orientation of spin vector d(k̂) with respect
to k̂, or between the spin and orbital degrees of freedom of the
order parameter [2]:

UD ∼
∫
(dok/4π)3|k̂ · d(k̂)|2. (6)

The continuity equation for spin, even at H = 0, contains on
the right-hand side a torque Nλ which is a source or a sink of
spin:

∂Sμ
∂ t

+ ∂ j sp
μn

∂xn
= Nμ. (7)

The torque is determined as Nμ = −∂UD/∂θμ, where θμ is
an infinitesimal rotation conjugated to the spin projection Sμ.
The dynamics of spin can be dominated by spin flow if the
r.h.s. of equation (7) is negligible. A typical situation is just
the opposite. In particular, in the A phase the dipole energy
has the following form:

U A
D = −χ�

2
A

2g2
(d · l)2, (8)

where χ is the magnetic susceptibility of this phase, g is
the gyromagnetic ratio of the 3He nuclei and �A is an
experimentally measurable longitudinal resonance frequency,
dependent on pressure and temperature. At temperatures well
below the superfluid transition temperature Tc the frequency
�A ≈ 2π × 105 s−1, which corresponds to the Larmor
frequency of 3He in a magnetic field �30 Oe. The dipole
interaction is about four orders of magnitude less strong than
the ‘binding energy’ of the Cooper pair, but it is a principal
interaction lifting the degeneracy of the order parameter with
respect to rotation of the spin coordinates. In equilibrium
vector d is ‘locked’—it has to be aligned with the orbital vector
l, which points in the direction of the orbital momentum of
the Cooper pair. The spin current term in equation (8) is
comparable with the torque ND when d varies on a length scale
on the order of the so-called dipole length ξD ∼ c/�A, where
c is the spin wave velocity. For 3He ξD ∼ 10−3 cm. An even
stronger variation of the order parameter is needed to make the
dipole torque negligible.

In the B phase the order parameter d(k̂) = |�|eiϕR̂k̂,
where R̂ is a real orthogonal matrix. Its elements, as well as
|�| and ϕ, do not depend on k. An orthogonal matrix can be
considered as a matrix of rotation, which transforms direction
k̂ in a direction d̂, corresponding to a given k̂. This rotation
is often parameterized by a unit vector n, which specifies the
direction of the rotation axis and rotation angle θ , i.e. R̂ =
R̂(n, θ). For such a form of the order parameter the dipole
energy UD does not lift its degeneracy completely. In terms of
n and θ :

U B
D = 8

15

χ�2
B

g2

(
1

4
+ cos θ

)2

, (9)
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Figure 1. Envelopes of free induction decay signals after a 90◦ tipping pulse. The cell had the form of a cylinder (
5 mm, length of 13 mm)
with the axis oriented normal to the external steady field. P = 29.3 bar, H = 77 Oe. (a) Signal from 3He-B at T = 0.7, Tc; (b) signal from
normal phase at the same inhomogeneity of H.

where �B is the longitudinal resonance frequency in 3He-B.
In equilibrium the angle θ takes a value corresponding to the
minimum of U B

D : cos θ = −1/4, or θ = θ0 ≈ 104◦, but
there remains degeneracy with respect to the direction n. This
degeneracy is ultimately lifted by a much weaker interaction—
mutual action of the dipole energy and that of the deformation
of the order parameter by the magnetic field H, it tends to orient
n parallel or antiparallel to H.

3. Pulsed NMR

Favorable conditions for observation of a macroscopic spin
flow are realized in pulsed NMR experiments. In these
experiments a steady magnetic field H induces equilibrium
magnetization M = gS = χH, where S is the spin density of
the considered superfluid phase. Thereupon, the magnetization
M is tilted by an angle β with respect to the equilibrium
orientation by the resonant radio frequency (RF) pulse and left
to move in the magnetic field. A coupled motion of the spin
and of the order parameter d(k̂) of superfluid 3He is governed
by the Leggett equations [3]:

Ṡ = gS × H + ND, (10)

ḋ(k̂) =
(

g2S
χ

− gH
)

× d(k̂), (11)

which are generated by the Hamiltonian

HL = g2S2

2χ
− gSH + UD. (12)

Of main interest are effects, originating from the dipole torque
ND. Corruccini and Osheroff [4] were the first to apply the
pulsed NMR technique to the superfluid 3He and obtained
many interesting results in both superfluid phases. The most
important for the present discussion are the results concerning
spin precession and magnetic relaxation in 3He-B.

The steady magnetic field in the experiments [4] varied
in the range ∼600–1000 Oe. The ratio of the two terms on
the r.h.s. of equation (10) scales as (ωL/�B)

2 ∼ 30–100.
The dipole torque produces a small shift of the precession
frequency ωp from the Larmor frequency ωL. The observed

dependence of the shift on the tipping angle β was close to that
found theoretically by Brinkman and Smith [5]. For β < θ0

there was no shift, for β > θ0 the shift was positive and it was
satisfactorily described by the formula:

ωp = ωL − 4�2
B

15ωL
(1 + 4 cosβ). (13)

At temperatures below 0.6Tc Corruccini and Osheroff observed
a very long lived induction signal. The signal appeared after
tipping the magnetization through an angle ∼90◦, it was about
1/10 of the initial signal in the amplitude, and it persisted for
about 1 s. This time is much longer then the dephasing time
due to the inhomogeneity of the magnetic field H, which was
∼15 ms in these experiments. Later the long lived induction
decay signal (LLIDS) was also observed by Giannetta et al at
different pressures and at higher temperatures �0.75Tc [6]. In
their experiments the ringing continued for about 50 ms versus
the dephasing time (as measured in the normal phase) of about
3.5 ms.

In 1984 a systematic studies of this phenomenon were
done in the Kapitza Institute in Moscow. The new element
was a possibility to apply a controlled gradient of magnetic
field. It is also important that the experimental cells used
in the Moscow experiments were almost ‘closed’, i.e. the
experimental volume where spin precession occurred was
connected with the rest of the experimental chamber by a
long and narrow channel [7, 8]. In figure 1 envelopes of free
induction decay signals (FIDS) obtained in such an almost
closed cell are shown. As in [4, 6], it was found that for
large tipping pulses duration of the FIDS in 3He-B is much
longer than in the normal phase at the same inhomogeneity of
H. For large field gradients the LLIDS persisted up to three
orders of magnitude longer than the dephasing time. At the
same time the amplitude of the LLIDS was much larger than
in the previous experiments (up to 95% of the initial amplitude
of the FIDS). It was also observed that the frequency of the
LLIDS decreases with time. The rate of the decrease grew with
the field gradient. The obtained results clearly indicated that
the local precession picture has only limited applicability to
describing the motion of magnetization in 3He-B. Nevertheless
a closer look at uniform precession is useful as a starting point
for constructing a more realistic picture.

3
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4. Coherent precession of spin

The regular precession of S and d(k̂) is analogous to precession
of a top. This motion is conveniently described in terms of
the Euler angles. The instantaneous orientation of the order
parameter d(k̂, t) is related to its initial orientation d0(k̂):

d(k̂, t) = R̂(α, β, γ )d0(k̂). (14)

As a d0(k̂) the equilibrium orientation of the order parameter
can be chosen. The angles α, β, γ are functions of time t . For
the sake of definiteness n is assumed to be antiparallel to the
magnetic field. Hamiltonian (12) has to be expressed in terms
of α, β, γ and their canonically conjugated projections of spin
respectively Sz, Sζ , Sβ , where Sz is the projection on the z-axis,
Sζ the projection on ζ̂ = R̂(α, β, γ )ẑ and Sβ the projection on
the direction ζ̂ × ẑ. Of the three terms in the Hamiltonian only
the dipole energy contains angles α and γ and these angles
enter UD only as a combination� = α + γ :

UD = 2

15

χ�2
B

g2

[
cos β − 1

2
+ (1 + cos β) cos(α + γ )

]2

.

(15)
It is convenient to introduce α and � as new variables, then
their conjugated momenta are P = Sz −Sζ and Sζ respectively.
Since the angle α does not enter the Hamiltonian (12) its
conjugated momentum P = Sz − Sζ is conserved even
in a presence of the dipole interaction. In terms of these
variables the equations of motion (10), (11) have the standard
Hamiltonian form:

∂α

∂ t
= ∂HL

∂P

∂P

∂ t
= 0

∂β

∂ t
= ∂HL

∂Sβ

∂Sβ
∂ t

= −∂HL

∂β

∂�

∂ t
= ∂HL

∂Sζ

∂Sζ
∂ t

= −∂HL

∂�
.

(16)

The advantage of Euler angles as variables is that for a regular
precession, in a principal order on a small ratio (�B/ωL)

2,
they have a direct physical meaning: β is a ‘tipping’ angle,
i.e. it is the angle between the instantaneous orientation of spin
S and its equilibrium orientation, the angle α is the phase of
precession, and the angle γ is the phase of rotation of the order
parameter at the instantaneous direction of S. A stationary
precession with the frequency ωp is described by solutions of
equations (16) with

∂α

∂ t
= −ωp,

∂�

∂ t
= ∂β

∂ t
= ∂Sζ

∂ t
= ∂Sβ

∂ t
= 0. (17)

According to equations (16) these solutions are minima of the
potential

H̃ = HL + Pωp (18)

with respect to the variables β,�, P etc. Transformation (18)
is analogous to the transition from density (P) to chemical
potential (−ωp) as a variable in thermodynamics, it also makes
it possible to consider spatially nonuniform stationary states.

In the general case for a givenωp potential H̃(Sζ , P, Sβ , β,
�) as a function of its 5 arguments has isolated minima. This is
true for the Leggett Hamiltonian of 3He-B only if ωp > ωL [9].
The value ωp = ωL is degenerate—to this value corresponds a
whole line of minima. If the tipping angle β is chosen as a pa-
rameter on this line the other variables (in units for which χ =
g2) are expressed as: Sζ = ωL, Sβ = 0, P = ωL(cos β − 1)
and the angle � has two branches ±�(β), determined by the
equation:

cos� = 1/2 − cos β

1 + cos β
. (19)

Meaningful solutions of this equation exist for 0 � β � θ0. On
the line of minima U B

D = 0 and H̃(Sζ , P, Sβ , β,�) = const.
Degeneracy of H̃ at ωL−ωp = 0 with respect to cosβ , or to the
variable P = ωL(cos β−1), which is conjugated to ωL −ωp, is
analogous to the degeneracy of the state of the ideal Bose-gas
at μ = 0 with respect to its density. In case of a Bose-gas
this degeneracy results in Bose–Einstein condensation. For
the precessing spin the analogous degeneracy gives rise to
formation of coherently precessing structures [10, 11].

When β grows from 0 to θ0 the angle� varies from ±θ0 to
0. At β = θ0 two branches of �(β) merge and in the interval
θ0 < β < π�(β) = 0. In this interval of β the dipole energy
grows from 0 at β = θ0 to 3χ�2

B/(10g2) at β = π . In both
intervals of β combination� = α+γ is fixed, i.e. the phase of
rotation of the order parameter γ is rigidly connected with the
phase of precession of spin α. The precessing configurations
of spin and of the order parameter are uniquely determined by
the two angles α and β .

The degeneracy of a state of precession with ωp = ωL

is lifted by inhomogeneity of magnetic field. For definiteness
here, and in what follows, we consider the simplest form
of inhomogeneity—a constant field gradient, i.e. the Larmor
frequency is linearly changing along direction z, coinciding
with the direction of the magnetic field:

ωL(z) = ωL(z0)+ (z − z0)∇ωL, (20)

where z0 is defined by the condition: ωL(z0) = ωp. The
analysis can be easily reformulated for more complicated
configurations of the field. Neglecting the effect of side
boundaries we consider a stationary solution, depending only
on one coordinate—z. This solution is an extremum of the
functional

∫
[H̃|ωL(z0) − (z − z0)Sz∇ωL + FB∇] dz. (21)

Here FB∇ is the kinetic, or ‘gradient’ energy (4) specified for
the B phase. In the one-dimensional case it has the form:

FB∇ = 1
2 c2

‖[2(1 − cos β)α′(α′ −�′)+�′2 + β ′2]
− (c2

‖ − c2
⊥)[(1 − cos β)α′ −�′]2, (22)

where c‖ and c⊥ are the velocities of the two types of spin-
waves in 3He-B. To simplify the formula here we use units
such that g2 = χ . Inhomogeneity of the field is usually small
(∼1 Oe cm−1) making it possible to treat in (21) the terms
containing ∇ωL and derivatives of the angles α′, β ′ and �′ as
perturbations. As the zero-order approximation the degenerate

4
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minimum of H̃|ωL=ωp has to be used: Sz = ωp cos β, Sζ =
ωp, Sβ = 0 and�(β), given by equation (19). For this solution
H̃|ωL=ωp = const. and only the part of the functional (21)
containing perturbation has to be minimized with respect to
the angles α and β over which the zeroth-order solution is
degenerate:

δ

∫
[FB∇ − ωp cos β(∇ωL)(z − z0)] dz = 0. (23)

The general form of the solution can be guessed even without
solving the corresponding variational problem. The second
term in the integrand has the minimum possible value if
cos β = 1 for z > z0 and cos β = −1/4 for z < z0. The
gradient energy FB∇ leads to a smooth transition between the
two limiting values of β . One can conclude, that in a weakly
inhomogeneous magnetic field stationary precession with the
frequency ωp is realized in the form of the spatially nonuniform
spin structure [12, 13]. The structure consists of two domains,
separated by the domain wall situated at z = z0, defined by
the condition ωL(z0) = ωp. In a region of z, corresponding
to stronger magnetic field spin has equilibrium orientation
(equilibrium domain), while in a region of weaker field the spin
is tilted by an angle β ≈ arccos(−1/4) and precesses with the
angular velocity ωp (figure 2).

To maintain a constantωp whenωL varies with coordinates
in the precessing domain spin has to be tilted by an angle
β > θ0. In this region �(β) = 0 and the emerging dipole
shift compensates variation of ωL. According to equation (13)
the angle β tends to

β = θ0 +
(

15

16

)1/2
ωL∇ωL

�2
B

(z0 − z), (24)

when z0 − z decreases. For typical experimental conditions
the maximum deviation of tipping angle from θ0 within the
precessing domain is small (βmax − θ0) � 0.1 rad.

A more detailed analysis of the two-domain structure
can be carried out with the use of Euler–Lagrange equations,
corresponding to the functional (23). Variation of the
functional (23) with respect to α gives the equation

∂

∂z
{(cos β − 1)[2α′(c2

‖ cos β + (1 − cosβ)c2
⊥)

+ �′(2c2
⊥ − c2

‖)]} = 0. (25)

This is a conservation law (7) for P = Sz − Sζ in the case
of stationary flow. The combination of derivatives in the curly
brackets is the expression for the current of P in the direction
z: j sp

Pz. According to equation (25) j sp
Pz = const. The constant

here is determined by the boundary conditions. It is natural
to assume, that at the boundaries of the container, oriented
perpendicular to the z-direction j sp

Pz = 0, then for a closed
container j sp

Pz = 0 everywhere inside the container. Taking
into account that within the precessing domain � = 0 we
arrive at the conclusion, that in this domain α = const.. That
means that not only frequency, but also the phase of precession
is constant even though the magnetic field in not uniform.
This property is sometime referred to as the coherence of
precession. To emphasize this property the abbreviation HPD

Figure 2. Schematic drawing of the two-domain structure. The
arrows on the figures point in the direction of the spin density S.
It should be remembered that g is negative and the magnetization
M = gS is counter-aligned with S.

(homogeneously precessing domain) is used. It is clear from
the above discussion that for the HPD formation the geometry
of the cell is important. If the cell is not ‘closed’ then the
condition j sp

Pz = 0 may not be fulfilled and the HPD may not
be formed or can be formed only for a specific inhomogeneity
of the steady magnetic field.

Within the HPD the phase of precession α is analogous
to the phase of the order parameter ψ = |ψ| exp(iϕ) for
the superfluid 4He. The spin current maintains coherence of
precession analogous to the mass current, which in the case
of 4He maintains a constant ϕ. Perturbations of the phase
α give rise to oscillations of the structure involving spin and
spin current. The experimentally measured frequency of these
oscillations agrees with the theoretical calculations [14, 15].

Variation of the functional (23) with respect to β gives
the second Euler–Lagrange equation which makes it possible
to find the variation of angles α and β within the domain
wall. Numerical solution of the obtained equation, together
with equation (25), gives a smooth curve for a change of cosβ
from 1 to (−1/4) within a region with a characteristic length
λ = [c2

‖/(ωp∇ωL)]1/3 (cf curves 4, 5, 6 in figure 4). For
H0 ≈ 300 Oe, ∇H0 ≈ 0.1 Oe cm−1, c‖ ≈ 1000 cm s−1,
λ ≈ 4 × 10−2 cm.

5. Formation and relaxation of the HPD

The described two-domain structure is stationary only while
dissipative processes are neglected. For a small dissipation
it becomes quasi-stationary. Within the structure only the
precessing domain is out of equilibrium. The approach to
the equilibrium has to go via an increase of the equilibrium
domain at the expense of the precessing domain. In this process
the domain wall has to move in the direction of the weaker
magnetic field, and because of the condition ωp = ωL(z0) the
frequency of precession of the two-domain structure decreases
with time, in agreement with the observation [7, 8]. The major
contribution to the relaxation of the structure comes from the
two mechanisms of relaxation of spin: spin diffusion across the
domain wall and the Leggett and Takagi ‘intrinsic’ mechanism
of relaxation, which is effective within the precessing domain.

5
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Figure 3. Formation and relaxation of the HPD after the 90◦ tipping pulse. At the beginning the dephasing (b) results in flow of spin along the
z-axis j sp ∝ ∇α and in redistribution of spin (c): near the top β reaches ∼104◦, while near the bottom β = 0. Then the domain wall is formed
(d), so that j sp = 0. The magnetic dissipation results in a gradual decrease of the HPD size ((d)–(e)).

Figure 4. Computer simulations of the HPD formation and
relaxation in the pulsed NMR experiment. The curves show the
spatial distribution of Sz = cosβ in a 4 mm long cell at different
times after the 90◦ tipping pulse: 1–4 ms, 2–8 ms, 3–14 ms, 4–30 ms,
5–46 ms, 6–62 ms, 7–94 ms. The duration of the corresponding
LLIDS is about 100 ms. The parameters of the simulations are:
H = 284 Oe, ∇H = 0.2 Oe cm−1, P = 16 bar, T = 0.54Tc,
D = 0.02 cm2 s−1.

The sum of both contributions in the hydrodynamic limit gives
the following rate of a change of precession frequency:

dωp

dt
= −4

5

D1

λ
σ∇ωL − 1

4
τeff[ωp − ωL(0)]3, (26)

where D1 is a relevant component of the spin diffusion tensor
and τeff—a phenomenological constant, which characterizes
the efficiency of the Leggett and Takagi mechanism of
relaxation. The contribution of this mechanism to the rate of
relaxation depends strongly on the total variation of the Larmor
frequency over the length of the precessing domain ωp −ωL(0)
(it is assumed here that z = 0 corresponds to the low-
frequency end of the cell). The contribution of spin diffusion
in equation (26) does not depend on the position of the domain
wall, making it possible to separate the two contributions and
extract from the experimental data the dissipative constants τeff

and D1 [16].
An account of dissipation is also necessary for a

description of the process of formation of the two-domain

Figure 5. Sketch of the cell with three NMR coils.

structure from the uniform state of precession, prepared by
the usual pulsed NMR technique. A qualitative scenario can
easily be guessed (cf figure 3). After the tipping pulse the
spin starts to precess with a local Larmor frequency. This
frequency is spatially nonuniform, giving rise to a dephasing
which increases with time: ∇α ≈ t∇ωL. The dephasing in
its turn gives rise to the spin current, which redistributes the
spin over the volume of the cell, increasing the z-projection of
spin in the part of the container situated in a stronger magnetic
field and decreasing it in the opposite part. After damping of
the transient oscillations the two-domain structure is formed,
which relaxes slowly to complete equilibrium. This scenario is
confirmed by a one-dimensional computer simulation of the
process of the formation of the structure with the use of a
full system of equations of spin dynamics including the spin
supercurrent (figure 4).

For experimental verification of the proposed scenario a
special cell with three NMR coils was made [7, 8] (figure 5).
Coil 1 was used to tip the spin in the whole volume of the
cell. The miniature coils 2 and 3 were used to detect the
signals separately from the upper and lower parts of the cell
(their sensitivity regions did not overlap). Time dependencies
of the FIDS amplitude in 3He-B recorded from coils 2 and 3
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are shown in figure 6. The clear difference in the signals can
be explained as follows. After the large tipping pulse applied
to coil 1 it takes about 20 ms for the two-domain structure to
be formed. The field gradient is directed so that the precessing
domain is formed in the upper part of the cell, i.e. near coil
2. As a consequence the amplitude of the signal from this
coil is large. Correspondingly the equilibrium domain, which
does not precess, is formed near the coil 3 and the signal from
the coil 3 rapidly disappears (figure 6(b)). Magnetic relaxation
leads to a gradual decrease of the HPD size: the domain wall
is moving up and the signal from coil 2 starts to decrease when
the wall enters its region of sensitivity (figure 6(a)). It should
also be noted that variation of the frequency of the signal with
time corresponds well to the HPD model: after formation of the
two-domain state the frequency decreases and the total change
of the frequency is equal to l∇ωL, where l is the initial length
of the HPD, which does not exceed the cell length and depends
on the initial tipping angle. When the direction of ∇ωL was
reversed the signals in the coils 2 and 3 exchanged their roles,
except that the LLIDS in the coil 3 did not last as long as in
the coil 2. The difference can be attributed to the leakage of
the precessing spin through the connecting tube at the bottom
of the cell.

The pulsed NMR experiment with three coils was the
first direct experimental verification of the existence of the
two-domain structure. It also confirmed the main properties
of the structure. Further possibilities for investigation and
application of the two-domain structure were opened by the use
of the continuous wave (CW) NMR technique. It was found
that a sufficiently strong resonant radio frequency field can
compensate the energy dissipated in the two-domain structure.
With this technique the HPD can be maintained as long as
necessary. The power absorbed by precessing magnetization
from the RF field is defined by the following equation:

W = 1
2

∫
hωRF|M| cos β sin(α − φ) dV , (27)

where h is the amplitude of the RF field and φ is the phase
of RF field. For large enough h the phase of precession α
can tune itself to the phase of RF field so that the power W
becomes equal to that dissipated in the HPD. The condition
ωp = ωRF = ωL(z0) defines the ‘effective’ position of the
domain wall in figure 2 as z0 = (ωRF − ω(0))/(∇ωL), which
can be inside or outside of the cell. Inside the cell the effective
position coincides with the position of the real domain wall.
By varying ωRF one can create the two-domain structure and
change the position of the domain wall [17]. In practice, it
is more convenient to vary ωL (i.e. H ) than ωRF. For the
creation of the HPD it is important whether H0 is increased or
decreased. If for the geometry shown in figure 2 the effective
position z0 moves downwards (i.e. H0 is decreasing) and enters
the cell at the top then the HPD is created and grows. But if z0

moves upwards (in the absence of the HPD) and enters the cell
at the bottom the HPD is not created, because now it should be
created at once in the whole volume of the cell. Thus the CW
NMR signal from the HPD is characterized by hysteresis with
respect to the direction of the sweep. We should remark here
that the hysteretic behavior in nonlinear CW NMR in 3He-B

Figure 6. Amplitudes of free induction decay signals from the HPD
recorded from coil 2 and coil 3 after the tipping pulse applied by coil
1. The magnetic field gradient was applied so that the HPD should be
formed in the upper part of the cell. P = 29.3 bar, H = 142 Oe,
∇H = 0.1 Oe cm−1, T = 0.63, Tc.

was previously observed in [18, 19], but it is not clear whether
it was due to the HPD or to a complex spatial distribution
(texture) of the order parameter. In experiments [17] the
existence of the HPD formation in CW NMR was verified by
the following procedure: after the HPD formation, the CW RF
field was switched off and the LLIDS, corresponding to a slow
relaxation of the HPD, was observed.

6. Applications of HPD

In further experiments the two-domain structure was used as
a tool for investigations of other phenomena which involve
spin currents. In the experiments with one HPD some of
the parameters, characterizing properties of the superfluid
3He, were measured, such as the above mentioned relaxation
constants D1 and τeff and the spin wave velocities c‖ and
c⊥ [8, 16, 20]. It was also found that the HPD interacts
with rotating 3He-B. That allowed the study of the structure of
vortices [21, 22] and the measurement of the superfluid density
anisotropy [23].

According to equation (27) for a fixed length of HPD
(or, equivalently, of the rate of dissipation) an increase of h
results in a decrease of |α − φ|. In practice, for standard
parameters α ≈ φ already at h � 0.01 Oe. This makes
it possible to control α in the HPD by the RF field. This
possibility was used for studies of the flow of spin supercurrent
through the channel connecting two separate cells with HPDs
maintained by independent RF fields [24, 25]. When the
phases of precession in these two HPDs were different the
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Figure 7. Amplitude (a) and frequency (b) of LLIDS from the HPD
in the ‘sandwich’ cell shown in the inset. The cell had a diameter of
5.3 mm and a length of 5.6 mm. The aerogel disc had a thickness of
2.4 mm and was situated in the middle. The scale at the right axis of
the lower graph shows the approximate position of the domain wall
calculated from the frequency using equation (20). The initial HPD
length is 4.6 mm, H = 284 Oe, ∇H = 1.6 Oe cm−1, P = 25.5 bar,
T ≈ 0.5, Tca , where Tca is the temperature of the superfluid
transition of 3He in aerogel, which was equal to about 0.8 of the
temperature of the superfluid transition in the bulk 3He.

spin supercurrent in the channel was excited. The dependence
of spin supercurrent on the phase difference was measured.
Phase slips and the transition to Josephson phenomena on spin
current were observed as well.

The HPD is specific for the B phase order parameter and
can be used as its ‘signature’. In the B-like phase of 3He
in aerogel, whose order parameter is analogous to that of the
bulk 3He-B, the HPD has also been observed and used for
measurements of �B [26, 27]. The temperature of superfluid
transition of 3He in aerogel is essentially smaller than in the
bulk 3He; the gap and other parameters (spin wave velocities,
Leggett frequency etc) are also different. However, in a special
‘sandwich’ cell (inset in figure 7), where both the bulk B phase
and B-like phase in aerogel were present, it was possible to
create one common HPD in the whole volume. The HPD was
created by CW NMR and was grown to occupy the whole
volume. The amplitude and frequency of LLIDS recorded
after switching off the RF field are shown in figure 7. It is
seen that the HPD relaxation (i.e. the decrease of its length)
occurs without any sharp features: at the beginning the domain
wall moves inside the bulk 3He-B (region I in figure 7), then
inside aerogel (region II) and, finally, again in the bulk 3He-
B (region III). It demonstrates that HPDs in bulk 3He and in
3He in aerogel have the same structure which is defined mainly
by the form of the order parameter, but not by its quantitative
characteristics.

In conclusion we would like to mention that the HPD is
the most simple and best understood example of coherently
precessing spin structures maintained by spin supercurrents.

At temperatures below ∼0.3Tc a very long lived induction
signal with properties, different from these of the HPD, was
observed [28]. It is referred as the ‘persistent’ signal in the
literature. According to the existing interpretation this signal
originates from the coherent precession of the spin within
a localized region with a size which is much smaller than
the size of the experimental cell. This precessing pattern
is trapped by the texture of the order parameter [29, 30].
In this case the coherence of precession is also maintained
by the spin supercurrent. Further possibilities of realization
of coherent precession including A and B phases with a
special orientation of their order parameters [31–33] have been
discussed. However, to date no experimental evidence of such
coherently precessing structures has been reported.
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